Předmět: Rozhodování na základě dat

» Seznam fakult » EF » KIN
Název předmětu Rozhodování na základě dat
Kód předmětu KIN/RZD
Organizační forma výuky Přednáška + Seminář
Úroveň předmětu Bakalářský
Rok studia nespecifikován
Semestr Zimní a letní
Počet ECTS kreditů 4
Vyučovací jazyk Čeština
Statut předmětu Povinně-volitelný, Volitelný
Způsob výuky Kontaktní
Studijní praxe Nejedná se o pracovní stáž
Doporučené volitelné součásti programu Není
Vyučující
  • Podaras Athanasios, Ing. Ph.D.
  • Lamr Marián, Ing. Ph.D.
Obsah předmětu
Přednášky (témata): 1. Data a jejich zpracování, typy dat, shromažďování dat. Importy a exporty dat. 2. Dělení dataminingových úloh, představení typických úloh. 3. Proces dobývání znalostí z rozsáhlých datových struktur, metodologie CRISP- DM. 4. Příprava dat, porozumění datům, popis datové množiny, příprava datové matice, výběr dat a jejich čištění, konstrukce a slučování datových zdrojů, typová homogenita, formátování dat. 5. Aktuální nástroje využívané pro pokročilou analýzu dat a dolování znalostí z dat. 6. Základy tvorby dataminingových modelů. 7. Využívání asociačních pravidel k predikci chování zákazníka. 8. Klasifikace a typické klasifikační úlohy. 9. Predikce a segmentace. 10. Evaluace a hodnocení modelů. Semináře (témata): 1. Seznámení se s prostředím IBM SPSS Modeler. 2. Příprava, analýza a vizualizace dat. 3. Úlohy pro predikci chování zákazníka. 4. Analýza nákupního košíku s využitím asociačních pravidel. 5. Efektivita marketingových akcí. 6. Zacílení marketingové kampaně. 7. Migrace zákazníků ke konkurenci. 8. Využití textu k predikci chování zákazníka. 9. Segmentace zákazníků. 10. Úlohy pro analýzu lidských zdrojů v podniku.

Studijní aktivity a metody výuky
Přednáška, Cvičení
Výstupy z učení
Cílem předmětu je seznámit studenty s problematikou rozhodování na základě znalostí získaných z různých typů datových zdrojů. Jednotlivé kroky procesu získávání znalostí budou demonstrovány na praktických úlohách. Studenti budou seznámeni s technikami, nástroji a algoritmy používanými při tomto procesu. Na seminářích se studenti seznámí s IBM SPSS Modeler a s dalšími open source nástroji při řešení širokého spektra úloh zaměřených na manažerské rozhodování na základě velkých dat. Budou představeny dataminigové postupy a algoritmy, ale i metodologie CRISP-DM.

Předpoklady
nespecifikováno

Hodnoticí metody a kritéria
nespecifikováno
Zápočet: Aktivní účast na cvičeních, písemná práce, obhajoba semestrálního projektu Zkouška: Písemná a ústní část
Doporučená literatura
  • HAN, Jiawei. a Micheline. KAMBER, 2012. Data mining: concepts and techniques. 3rd ed.. Burlington, MA: Elsevier., 2012. ISBN 9780123814791.
  • HOFMANN, Markus a Ralf. KLINKENBERG. RapidMiner: Data Mining Use Cases and Business Analytics Applications.. Florida: Taylor & Francis Group., 2013. ISBN 9781482205497.
  • PETR, Pavel. Metody Data Miningu.. Pardubice: Univerzita Pardubice, 2014. ISBN 9788073958732.
  • SHMUELI, Galit, Peter C. BRUCE, Mia L. STEPHENS a Nitin R. PATEL. Data mining for business analytics: concepts, techniques, and applications in JMP Pro. 1.. Canada: WILEY, 2016. ISBN 978-1-118-87743-2.
  • WENDLER, Tilo a Sören GRÖTTRUP. Data mining with SPSS modeler: theory, exercises and solutions. 1. Switzerland: Springer, 2016. ISBN 978-3-319-28707-2.
  • WITTEN, I. H. a Frank EIBE. Data mining: practical machine learning tools and techniques:Fourth Edition. Cambrige, 2017. ISBN 9780128042915.


Studijní plány, ve kterých se předmět nachází
Fakulta Studijní plán (Verze) Kategorie studijního oboru/specializace Doporučený ročník Doporučený semestr