Přednášky (témata): 1.Relational Databases - RDBMS, Tables, Relationships, Attributes, Data Types, ER Diagram 2.Relational Databases II- Referential Integrity, Cardinality, Primary and Foreign Keys, Normalization (1,2,3 NF) 3.Modeling Business Decisions - Flowcharts, Iterations, Incremental Approach, Use Cases 4.Decision Making Based on Multidimensional Data Models - Business Intelligence Architecture, Hierarchies, Granularity, Data warehouse Schemas 5.OLAP Tools for Business Decisions, ETL 6.Predictive Decisions Making with Data Mining Methods - CART, Classification, Simple Linear Regression, 7.Polynomial Regression, Multivariate Regression, Decision Trees, Business Rules Semináře (témata): 1.MS Access Tables, Relationships, Referential Integrity, Data Types 2.Calculated Fields, Lookup Values, Import/Export Datasets, introduction to the Expression Builder 3.MS Access Queries 1- Like, Between, Totals (Aggregate Functions) 4.MS Access Queries 2- Enter Parameter Value, IIF and Nested Decisions 5.Data Mining with Excel - Exporting Dataset with MS Query, If expressions in Excel, Regression modelling with Excel, Linest Function 6.Data Mining with R Scripts- Importing .csv file, splitting datasets, feature scaling, classification, decision trees 7.Data Mining Regression Modeling using R-Scripts
|
-
HAN, Jiawei. a Micheline. KAMBER, 2012. Data mining: concepts and techniques. 3rd ed.. Burlington, MA: Elsevier., 2012. ISBN 9780123814791.
-
HOFMANN, Markus a Ralf. KLINKENBERG. RapidMiner: Data Mining Use Cases and Business Analytics Applications.. Florida: Taylor & Francis Group., 2013. ISBN 9781482205497.
-
PETR, Pavel. Metody Data Miningu.. Pardubice: Univerzita Pardubice, 2014. ISBN 9788073958732.
-
SHMUELI, Galit, Peter C. BRUCE, Mia L. STEPHENS a Nitin R. PATEL. Data mining for business analytics: concepts, techniques, and applications in JMP Pro. 1.. Canada: WILEY, 2016. ISBN 978-1-118-87743-2.
-
WENDLER, Tilo a Sören GRÖTTRUP. Data mining with SPSS modeler: theory, exercises and solutions. 1. Switzerland: Springer, 2016. ISBN 978-3-319-28707-2.
-
WITTEN, I. H. a Frank EIBE. Data mining: practical machine learning tools and techniques:Fourth Edition. Cambrige, 2017. ISBN 9780128042915.
|