Course: Statistic Physics

» List of faculties » FM » KFY
Course title Statistic Physics
Course code KFY/STFB
Organizational form of instruction Lecture
Level of course Bachelor
Year of study not specified
Semester Winter and summer
Number of ECTS credits 3
Language of instruction Czech
Status of course Optional
Form of instruction Face-to-face
Work placements Course does not contain work placement
Recommended optional programme components None
Course availability The course is available to visiting students
Lecturer(s)
  • Erhart Jiří, prof. Mgr. Ph.D.
Course content
Matter as many particle system. Macroscopic and microscopic point of view, classical and quantum mechanics description. Statistical nature of observable macroscopic quantities. Equilibrium and relaxation processes. General equation of state and its consequences. Work and heat as energy transfer forms. Entropy and macroscopic state probability. Entropy changes for reversible and irreversible processes. Universe evolution. Entropy in the vicinity of absolute zero temperature. Third law of thermodynamics, impossibility to reach absolute zero temperature. Low-temperature properties of matter. Low-temperature cooling. Thermodynamic equilibrium conditions. Chemical potential. Phase transitions, Ehrenfest's classification. Basic idea of Landau theory of phase transitions and its application to ferroelectric materials. System in thermal equilibrium. Boltzmann's distribution. Canonical ensemble and entropy calculation. Partition function and thermodynamic quantity calculation. Equipartition theorem. Maxwell's distribution of velocities. Gibbs distribution. Bose-Einstein and Fermi-Dirac statistics. Free electrons in metals, Bose-Einstein condensation.

Learning activities and teaching methods
Monological explanation (lecture, presentation,briefing)
  • Class attendance - 28 hours per semester
Learning outcomes
Lectures explane statistical nature of basic thermodynamic quantities (thermal energy, entropy, temperature) and thermodynamic laws of energy conversion and increase of entropy. Probability interpretation of entropy establishes a bridge between macroscopic quantities and microscopic quantum-mechanical description of matter. Besides usual investigation of thermodynamic properties of gases and simple solids, low and negative temperatures are examined, as well as phase transitions in ferroelectric and superconducting materials and fluctuations, which are illustrated by computer simulations.
Fundamental knowledge of statistical physics for selected topics
Prerequisites
Any one

Assessment methods and criteria
Oral exam, Written exam

Successful answers to the examination questions are necessary for passing the exam.
Recommended literature
  • Baierlein R. Thermal physics. Cambridge University Press, Cambridge, 2005.
  • Conveney P., Highfield R. Šíp času, kap. 5 a 8.. OLDAG, Ostrava, 1995.
  • Hála E. Úvod do chemické termodynamiky. Academia, Praha, 1975.
  • Halliday, D., Resnick, R., Walker, J. Fyzika: část 2, Termodynamika. Brno VUT, Prometheus Praha, 2000.
  • Kolektiv. Výkladový slovník fyziky pro VŠ kurz. Prometheus, 1999.
  • Kvasnica, J. Statistická fyzika. Academia Praha, 1998.
  • Kvasnica J. Termodynamika. SNTL, Praha, 1965.
  • Levič V. G. Úvod do statistické fyziky. Nakladatelství Čs. Akademie věd, Praha, 1954.
  • Marvan M. Záporné absolutní teploty a nové základy termodynamiky. Státní nakladatelství technické literatury, Praha, 1965.
  • Svoboda E., Bakule R. Molekulová fyzika. Academia, Praha, 1992.


Study plans that include the course
Faculty Study plan (Version) Category of Branch/Specialization Recommended year of study Recommended semester