Předmět: Matematika 2

» Seznam fakult » FM » KMA
Název předmětu Matematika 2
Kód předmětu KMA/PMA2M
Organizační forma výuky Přednáška + Cvičení
Úroveň předmětu Bakalářský
Rok studia nespecifikován
Semestr Letní
Počet ECTS kreditů 6
Vyučovací jazyk Čeština
Statut předmětu Povinný
Způsob výuky Kontaktní
Studijní praxe Nejedná se o pracovní stáž
Doporučené volitelné součásti programu Není
Dostupnost předmětu Předmět je nabízen přijíždějícím studentům
Vyučující
  • Knobloch Roman, RNDr. Ph.D.
  • Bittnerová Daniela, RNDr. CSc.
  • Finěk Václav, doc. RNDr. Ph.D.
  • Bittner Václav, Mgr. Ph.D.
  • Břehovský Jiří, Mgr. Ph.D.
Obsah předmětu
Přednáška: 1. Nekonečné řady, kritéria konvergence, absolutní konvergence. 2. Úvod do metrických prostorů, funkce více proměnných - základní pojmy. 3. Spojitost a limita funkce více proměnných. 4. Parciální derivace, totální diferenciál, derivování složených funkcí, derivace ve směru. 5. Taylorův rozvoj, implicitní funkce. 6. Opakování. 7. Lokální extrémy funkcí více proměnných. 8. Vázané a absolutní extrémy funkcí více proměnných. 9. Obyčejné diferenciální rovnice prvního řádu, existence a jednoznačnost řešení. 10. Obyčejné diferenciální rovnice druhého řádu s konstantními koeficienty. 11. Úvod do numerického řešení diferenciálních rovnic. 12. Úvod do integrálního počtu funkcí více proměnných, Fubiniova věta. 13. Substituce ve vícerozměrném integrálu. 14. Opakování. Cvičení: 1. Opakování integrování. 2. Nekonečné řady, kritéria konvergence, absolutní konvergence. 3. Nekonečné řady, metrické prostory, funkce více proměnných - základní pojmy. 4. Spojitost a limita funkce. 5. Parciální derivace, totální diferenciál, derivování složených funkcí, derivace ve směru. 6. Taylorův rozvoj, implicitní funkce. 7. Opakování. 8. Lokální extrémy funkcí více proměnných. 9. Vázané a globální extrémy funkcí více proměnných. 10. Řešení obyčejných diferenciálních rovnic prvního řádu. 11. Řešení obyčejných diferenciálních rovnic druhého řádu. 12. Integrace funkcí více proměnných, Fubiniova věta. 13. Substituce ve vícerozměrném integrálu. 14. Opakování.

Studijní aktivity a metody výuky
Monologický výklad (přednáška, prezentace, vysvětlování)
  • Účast na výuce - 70 hodin za semestr
  • Příprava na zápočet - 28 hodin za semestr
  • Příprava na zkoušku - 42 hodin za semestr
  • Domácí příprava na výuku - 40 hodin za semestr
Výstupy z učení
Předmět je úvodem do diferenciálního počtu funkce více (zejména dvou) reálných proměnných, nekonečných řad, dvojných integrálů a základním kurzem obyčejných diferenciálních rovnic.
Základní poznatky o nekonečných řadách, diferenciální počet funkcí více proměnných, obyčejné diferenciální rovnice, základy numerické matematiky a integrální počet funkcí více proměnných.
Předpoklady
Znalosti předmětu Matematika 1 (MA1-M).

Hodnoticí metody a kritéria
Kombinovaná zkouška

Zápočet: Aktivní účast na cvičeních + testy. Zkouška: písemná.
Doporučená literatura


Studijní plány, ve kterých se předmět nachází
Fakulta Studijní plán (Verze) Kategorie studijního oboru/specializace Doporučený ročník Doporučený semestr