Předmět: Matematika IIB (matematická analýza)

» Seznam fakult » FP » KAP
Název předmětu Matematika IIB (matematická analýza)
Kód předmětu KAP/M2B-P
Organizační forma výuky Přednáška + Cvičení
Úroveň předmětu Bakalářský
Rok studia nespecifikován
Semestr Zimní
Počet ECTS kreditů 5
Vyučovací jazyk Čeština
Statut předmětu Povinný
Způsob výuky Kontaktní
Studijní praxe Nejedná se o pracovní stáž
Doporučené volitelné součásti programu Není
Dostupnost předmětu Předmět je nabízen přijíždějícím studentům
Vyučující
  • Brzezina Miroslav, doc. RNDr. CSc.
  • Drahoš Jaroslav, RNDr. CSc.
  • Cvrček Milan, PhDr. Ph.D.
  • Kalousek Zdeněk, RNDr. CSc.
Obsah předmětu
<b>Anotace předmětu:</b> <i>Integrální počet funkcí více proměnných a jeho aplikace na geometrické, fyzikální a technické problémy. Křivkové a plošné integrály a jejich užití při technických výpočtech. Soustavy obyčejných lineárních diferenciálních rovnic s konstantními koeficienty a jejich řešení. Řešení obyčejných diferenciálních rovnic a jejich soustav pomocí Laplaceovy transformace.</i> <b>Obsah přednášek:</b> <b>Soustavy obyčejných diferenciálních rovnic:</b> Cauchyova úloha, pojem řešení a jeho vlastnosti. Soustava obyčejných lineárních diferenciál-ních rovnic 1. řádu. Řešení soustav obyčejných lineárních diferenciálních rovnic s konstantní-mi koeficienty. Stabilita řešení obyčejných diferenciálních rovnic. <b>Řešení diferenciálních rovnic a jejich soustav pomocí Laplaceovy transformace:</b> Pojem Laplaceovy transformace, základní vlastnosti, ?slovník? Laplaceovy transformace. Řešení diferenciálních rovnic a jejich soustav. Aplikace na řešení mechanických soustav. <b>Integrální počet funkcí více proměnných:</b> Integrační obory v kartézských a polárních souřadnicích v R2, v kartézských, válcových a kulových souřadnicích v R3. Dvojný a trojný integrál, jejich vlastnosti: Výpočet dvojného a trojného integrálu (Fubiniova věta), transformace souřadnic. Užití dvojného a trojného integrálu (výpočet objemu, hmotnosti, momentů setrvačnosti, těžiště těles). <b>Teorie pole:</b> Vektorové a skalární pole, potenciálové pole, rotace. Křivkové integrály I. a II. druhu, Greenova věta, nezávislost křivkového integrálu II. druhu na integrační cestě. Plošné integrály I. a II. druhu, Stokesova a divergenční věta. Užití křivkových a plošných integrálů ve fyzice a technice. <b>Upozornění:</b> Pro lepší informovanost studentů je k dispozici WWW - stránka o výuce, kterou zajišťuji a na níž můžete získat další informace: <center> <a href="http://"> http://e-learning.tul.cz</a> </center>

Studijní aktivity a metody výuky
Monologický výklad (přednáška, prezentace, vysvětlování), Prezentace a obhajoba písemné práce
  • Účast na výuce - 56 hodin za semestr
  • Příprava na zkoušku - 125 hodin za semestr
Výstupy z učení
Integrální počet funkcí více proměnných a jeho aplikace na geometrické, fyzikální a technické problémy. Křivkové a plošné integrály a jejich užití při technických výpočtech. Soustavy obyčejných lineárních diferenciálních rovnic s konstantními koeficienty.
Výpočty dvojných a trojných integrálů, řešení soustav diferenciálních rovnic.
Předpoklady
Základní dovednosti kalkulu.

Hodnoticí metody a kritéria
Písemná zkouška

<b>Podmínky k získání zápočtu:</b> Během semestru budou psány 2 písemné testy (po 10 bodech). Zúčastní-li se student alespoň 10 cvičení, bude si moci opravit (jednou) každý z testů. Dále, studenti vypracují 4 sady úloh, každá po 10 bodech. Student, který získá 20 a více bodů z těchto úloh a 10 a více bodů z testů, získá zápočet. Úlohy je nutné odevzdávat ve stanovených termínech, pozdní odevzdání se hodnotí 0 body. Výše uvedená podmínka platí pro studenty prezenčního studia. Studenti kombinovaného studia získají zápočet za získání 20 a více bodů z výše uvedených 4 sad úloh. <b>Zkouška:</b> Zkouška je písemná a je možné ji vykonat, má-li student/ka zápočty z Matematiky 2A a Matematiky 2B. Doporučuji, aby student/ka měl/a také zkoušku z Matematiky 1B.
Doporučená literatura
  • Mezník, I., Karásek, J., Miklíček, J. Matematika I. pro strojní fakulty.. Praha, SNTL, 1992.
  • Nagy, J., Nováková, E., Vacek, M. Integrální počet.. SNTL, Praha (MVŠT), 1984.
  • Nekvinda, M. Matematika. Část 1.. Liberec : Technická univerzita v Liberci, 2001. ISBN 80-7083-447-1.
  • Veit, J. Integrální transformace.. SNTL, Praha (MVŠT)., 1983.
  • Zelinka, B. Matematika III.. VŠST, Liberec, 1994.


Studijní plány, ve kterých se předmět nachází
Fakulta Studijní plán (Verze) Kategorie studijního oboru/specializace Doporučený ročník Doporučený semestr
Fakulta: Fakulta strojní Studijní plán (Verze): Strojní inženýrství (1) Kategorie: Strojírenství a strojírenská výroba 2 Doporučený ročník:2, Doporučený semestr: Zimní