Lecturer(s)
|
-
Pirklová Petra, RNDr. Ph.D.
-
Bímová Daniela, Mgr. Ph.D.
|
Course content
|
- Conics, focal properties of conics. - Axiomatic development of planimetry. Axioms of incidence, ordering, congruence, continuity and parallelism. - Geometric mapping on plane - concordance mapping, similar mapping. - Central collineation in plane. - Projection of conics by collineation. - Affinity in plane. - Projection of ellipse by affinity. - Set of points with property on plane. Power of a point with respect to a circle, chord. - Problem of Apollonius.
|
Learning activities and teaching methods
|
Monological explanation (lecture, presentation,briefing), Demonstration of student skills, E-learning, Students' self-study
- Preparation for credit
- 28 hours per semester
- Preparation for exam
- 28 hours per semester
- Semestral paper
- 8 hours per semester
- Class attendance
- 56 hours per semester
|
Learning outcomes
|
Planimetry: conics, axiomatic geometry, congruent and similar mappings, affinity, power of a point with respect to a circle, radical axis.
Focal properties of conics. Geometric mapping in plane. Affinity and perspective collineation.
|
Prerequisites
|
Knowledge of secondary school mathematics.
|
Assessment methods and criteria
|
Oral exam, Written exam
Credit: Active participation on seminars. Work out the term's work. Submission of the homeworks. Knowledge of secondary school planimetry. Exam: test and interview
|
Recommended literature
|
-
Fabiánová, H. - Ocmanová, B. Opakování geometrie. Liberec, TUL, 1999. ISBN 80-7083-355-6.
-
Kouřim, J. a kol. Základy elementární geometrie pro učitelství l. st. ZŠ. Praha, SPN, 1985.
-
Kuřina, F. Deset geometrických transformací. Praha, Prometheus, 2002.
-
Kuřina, F. Deset pohledů na geometrii. Praha, MÚ AV ČR, 1996.
-
Polák, J. Přehled středoškolské matematiky. Praha, SPN, 1991.
-
Přívratská, J. - Pecina, V. Kuželosečky. Liberec, TUL, 2004. ISBN 80-7093-855-8.
-
Přívratská, J.:. Planimetrie (opakování). Liberec, TUL, 2002. ISBN 80-7083-650-4.
-
Urban, A.:. Deskriptivní geometrie I, II. Praha, SNTL, 1967.
|