| 
        Lecturer(s)
     | 
    
        
            
                - 
                    Černá Dana, doc. RNDr. Ph.D.
                
 
            
         
     | 
    | 
        Course content
     | 
    
        Lectures: 1. Numerical methods - basic concepts, speed of computation, parallelization. 2. Basic concept of numerical linear algebra, conditioning of matrices, Gaussian elimination - complexity, stability, pivotation, tridiagonal matrices. 3. LU decomposition and Cholesky decomposition. 4. Iterative methods - Jacobi method.  5. Gauss-Seidel method, successive over-relaxation. 6. Solving rectangular linear systems - normal equations system, singular value decomposition, pseudoinverse matrix. 7. Numerical solution of nonlinear equations - bisection method, the secant method, Newton's method. 8. Interpolation - Lagrange and Hermite interpolation. 9. Spline interpolation. 10. Numerical integration - the rectangular rule, the trapezoidal rule, Simpson's rule. 11. Numerical methods for computation of derivatives. 12. Numerical solution of initial value problems - basic concepts, the transformation of the n-th order differential equation into a system of n simultaneous equations of the first order.  13. One-step methods for initial value problems. 14. Reserve, revision. 
         
         
     | 
    | 
        Learning activities and teaching methods
     | 
    
        
        Monological explanation (lecture, presentation,briefing)
        
            
                    
                
                    
                    - Class attendance
                        - 56 hours per semester
                    
 
                
                    
                    - Preparation for credit
                        - 15 hours per semester
                    
 
                
                    
                    - Semestral paper
                        - 20 hours per semester
                    
 
                
             
        
        
     | 
    
    
        
        
            | 
                Learning outcomes
             | 
        
        
            
                
                Construction of the mathematical and numerical model. Basic approximate and numerical methods: Methods of linear algebra, interpolation, and quadrature, solution of nonlinear equations. Euler method for solving ordinary differential equations.
                 
                Knowlige of fundamentals of numerical mathematics.
                 
                
             | 
        
        
            | 
                Prerequisites
             | 
        
        
            
                
                
                Passing of mathematical lectures of first  four semestrs.
                
                
                    
                        
                    
                    
                
                
  
             | 
        
        
            | 
                Assessment methods and criteria
             | 
        
        
            
                
                    
                        Written exam
                        
                        
                         
                        
                    
                    
                
                 Exam: Written.
                 
             | 
        
    
    | 
        Recommended literature
     | 
    
        
            
                
                - 
                    Duintjer Tebbens E. J. ,Hnětynková I.,Plešinger M.,Strakoš Z.,Tichý P. Analýza metod pro maticové výpočty: Základní metody. Matfyzpress, 2012. 
                
 
            
                
                - 
                    Ueberhuber, Ch. W.:. Numerical Computation 1, 2.. Berlin, Springer-Verlag, 1997. 
                
 
            
                
                - 
                    Vitásek, E.:. Numerické metody.. Praha, SNTL, 1987. 
                
 
            
         
         
         
     |