Course: Calculus 3

» List of faculties » FT » KMA
Course title Calculus 3
Course code KMA/PMA3*
Organizational form of instruction Lecture + Lesson
Level of course Bachelor
Year of study not specified
Semester Winter
Number of ECTS credits 5
Language of instruction Czech
Status of course Compulsory
Form of instruction Face-to-face
Work placements Course does not contain work placement
Recommended optional programme components None
Course availability The course is available to visiting students
Lecturer(s)
  • Hozman Jiří, RNDr. Mgr. Ph.D.
  • Černá Dana, doc. RNDr. Ph.D.
Course content
Lectures: 1. Laplace transform, definition, basic properties, application to solving ordinary differential equations. 2. Double and triple integrals. Calculation by successive integration. 3. Substitution in double and triple integrals. Polar, cylindrical, and spherical coordinates. Applications: area of a figure, volume of a solid, mass, moment, center of gravity. 4. Oriented curve. Curve integral of the 1st and 2nd kind, calculation. Applications: work of a force, circulation. 5. Potential of a vector field. Independence of a curve integral of the integration path. Green's theorem. 6. Oriented surface. Surface integral of the 1st and 2nd kind, calculation. Applications: mass, center of gravity of a figure, flux of a field through a figure. 7. Gradient, divergence, curl. Potential, sourceless, irrotational fields. Stokes' theorem, Gauss' theorem. 8. Function series, domain of convergence, power series. Abel's convergence theorem, radius of convergence. Differentiation and integration of power series. 9. Taylor series, expansion of some elementary functions. 10. Periodic functions. Fourier trigonometric series, convergence. Expansion of some functions. 11. Complex numbers, analysis of complex functions. Practice: The material explained in the previous week's lecture is practised.

Learning activities and teaching methods
Monological explanation (lecture, presentation,briefing)
  • Class attendance - 70 hours per semester
Learning outcomes
Fourier and Laplace transform. Double and triple integrals, curve and surface integrals. Function series, in particular power and Fourier series. Functions of complex variable.
Fundaments of integral calculus. Function series.
Prerequisites
Condition of registration: subjects Calculus 1, Calculus 2.

Assessment methods and criteria
Written exam

Credit: Active participation in practice, successfully written tests and semestral work. Exam: Written exam composed of the theoretical and computational parts.
Recommended literature
  • Brabec, J. - Hrůza, B. Matematická analýza 2.. Praha, SNTL, 1986.
  • Brabec, J. - Martan, F. - Rozenský Z. Matematická analýza 1. Praha, SNTL, 1985.
  • Brožíková, E. - Kittlerová, M. Sbírka příkladů z matematiky 2.. Praha, Vydavatelství ČVUT, 2002.
  • Černý, I. Úvod do inteligentního kalkulu.. Praha, Academia, 2002.
  • Jirásek, F. - Čipera, S. - Vacek, M. Sbírka řešených příkladů z matematiky 2.. Praha, SNTL, 1989.
  • Mezník, I. - Karásek, J. - Miklíček, J. Matematika 1 pro strojní fakulty. Praha, SNTL, 1992.
  • Nekvinda, M. - Říhová, H. - Vild, J. Matematické oříšky 2 (cvičení).. Liberec, TUL, 1999.
  • Pírko, Z. - Veit, J. Laplaceova transformace.. Praha, SNTL, 1972.
  • Rektorys, K. a další. Přehled užité matematiky.. Praha, Prometheus, 2000.
  • Strang, G. Calculus.. Cambridge, MA, Welesley-Cambridge Press, 1990.


Study plans that include the course
Faculty Study plan (Version) Category of Branch/Specialization Recommended year of study Recommended semester