|
Lecturer(s)
|
-
Černá Dana, doc. RNDr. Ph.D.
|
|
Course content
|
Lectures: 1. Basic concepts - numerical methods, types of errors, conditioning of the problem, algorithm complexity. 2. Numerical linear algebra - vector and matrix norms, conditioning of matrices, Gaussian elimination - complexity, stability, pivotation, tridiagonal matrices. 3. LU decomposition - complexity, stability, pivotating. Cholesky decomposition. 4. Numerical solution of nonlinear equations - bisection method, Newton's method. 5. Numerical solution of nonlinear equations - secant method, the Babylonian method. 6. Lagrange interpolation - Lagrange and Newton form, error estimate. 7. Hermite interpolation - Newton form, error estimate. Spline interpolation. 8. Function approximation by the method of least squares, system of normal equations. 9. Numerical integration - the rectangular rule, the trapezoidal rule, Simpson's rule. 10. Numerical differentiation - differences, error estimates. 11. Numerical solution of initial value problems - basic concepts, transforming the n-th order differential equation into a system of n simultaneous equations of the first order. 12. Euler method for initial value problems. 13. Revision - solving problems by numerical methods. 14. Test.
|
|
Learning activities and teaching methods
|
Monological explanation (lecture, presentation,briefing)
- Class attendance
- 56 hours per semester
- Preparation for credit
- 15 hours per semester
- Semestral paper
- 20 hours per semester
|
|
Learning outcomes
|
Construction of the mathematical and numerical model. Basic approximate and numerical methods: Methods of linear algebra, interpolation, and quadrature, solution of nonlinear equations. Euler method for solving ordinary differential equations.
Knowlige of fundamentals of numerical mathematics.
|
|
Prerequisites
|
Passing of mathematical lectures of first four semestrs.
|
|
Assessment methods and criteria
|
Written exam
Exam: Written.
|
|
Recommended literature
|
-
Duintjer Tebbens E. J. ,Hnětynková I.,Plešinger M.,Strakoš Z.,Tichý P. Analýza metod pro maticové výpočty: Základní metody. Matfyzpress, 2012.
-
Ueberhuber, Ch. W.:. Numerical Computation 1, 2.. Berlin: Springer-Verlag, 1997.
-
Vitásek, E.:. Numerické metody.. Praha: SNTL, 1987.
|