Course: Radiological physics 1

» List of faculties » FZS » FZS
Course title Radiological physics 1
Course code FZS/RFY1
Organizational form of instruction Lecture + Lesson
Level of course Bachelor
Year of study not specified
Semester Winter
Number of ECTS credits 5
Language of instruction Czech
Status of course Compulsory
Form of instruction Face-to-face
Work placements Course does not contain work placement
Recommended optional programme components None
Lecturer(s)
  • Mašková Barbora, Ing.
  • Beneš Jiří, prof. MUDr. RNDr. CSc.
Course content
Lectures: 1) Definition of radiology as a part of modern physics, basic concepts of non-ionizing - ionizing radiation, energetic conditions, basic forces (interaction) of nuclear, electromagnetic, weak nuclear and gravity 2) Physics of ionizing radiation, origins of the universe, elementary particles, force action particles, formation and structure of matter 3) Structure of atoms - atom models, properties of nuclei, chemical element, isotope, nuclide, nucleon number 4) Radioactive decay 1 - types of radioactive decay, natural and artificial radiation, law of radioactive decay 5) Radioactive transformation 2 - nuclear reactions, radioactive balance, fission, electron capture, fusion 6) Properties of ionizing radiation - alpha radiation, beta radiation, electromagnetic radiation, neutron radiation 7) Sources of ionizing radiation - natural sources of ionizing radiation, artificial sources of ionizing radiation 8) Interaction of ionizing radiation with matter - charged particles, electromagnetic radiation, neutron radiation 9) Dosimetry of ionizing radiation - system of dosimetric quantities and units; basics of microdosimetry 10) Principles of ionizing radiation detection - detection based on primary and secondary effects, personal dosimeters 11) Metrology of ionizing radiation, metrology of radionuclides, fundamentals of spectometry, relative measurements, personal dosimetry 12) Interaction of ionizing radiation with matter - basic mechanism of the effect of ionizing radiation on inanimate and living organisms, stochastic and non-stochastic effects, radiosensitivity and radioresistance 13) Protection against ionizing radiation, introduction, introduction to basic principles 14) Ionizing radiation in legislation of national institutions - national authorities and legislation, atomic law, SÚJB, SÚRO Exercises: 1) Basic procedures and calculations of field energy, mutual conversions of physical units (J, W, C, eV, J / kg) in space-time 2) Physical quantities and their units in radiology (Bq, Gy, Sv, C / kg) 3) Structure of matter, examples of atom notation, types and energies of bonding (polar, covalent) 4) Radioactivity, examples of classification and calculation of energy levels 5) Radionuclide sources of ionizing radiation 6) Dosimetry, comparison of individual principles and methods 7) Interaction of ionizing radiation with environment, practical examples

Learning activities and teaching methods
Lecture, Practicum
Learning outcomes
The aim of the course is to acquaint students with basic mathematical-physical and biophysical knowledge necessary for understanding the mechanism of interaction of ionizing radiation with living and inanimate systems. It explains the development of opinions on the microworld, radiation physics, relativistic and quantum properties, basic characteristics of atom and nucleus. The most important nuclear models, individual types of ionizing radiation, mechanisms of their origin, source principles etc. are explained. General properties of radioactive transformation, alpha conversion, proton radioactivity, beta conversion, gamma emission, natural radioactivity, properties and types of nuclear reactions, nuclear fission , transurans, thermonuclear reaction. Students also get acquainted with general characteristics of interaction of ionizing radiation with matter, interaction of alpha, beta, gamma and neutron radiation, passage of radiation beams through matter, effects of radiation on matter. It shows different description of the effect of radiation on inanimate matter and living organisms - cell, description of stochastic and non-stochastic processes, effects of radiation on tissue and organism, including basic description of radiation sickness. Students will also obtain the first information about principles of detection and measurement of ionizing radiation, dosimetric measuring methods, overview of dosimetric quantities and units. The quantities and units used to describe sources, fields and interactions of radiation, energy transfer, energy absorption and ionization are explained in detail. Based on the biological effects of ionizing radiation are described the latest quantities used in radiation protection. Special attention is paid to the objectives and tasks of radiation protection, principles of radiation protection and radiation monitoring.
Students obtain knowledge in given course in accordance with requirements and course programme.
Prerequisites
Preconditions are frased in the annotation of the course and in the curriculum of the studying programme.

Assessment methods and criteria
Written exam

Credit: - 80% participation in exercises, - two written tests.
Recommended literature
  • BENEŠ, Jiří, Daniel JIRÁK a František VÍTEK. Základy lékařské fyziky. Praha: Karolinum, 2015. ISBN 978-80-246-2645-1.
  • BENEŠ, Jiří, Jaroslava KYMPLOVÁ a František VÍTEK. Základy fyziky pro lékařské a zdravotnické obory: pro studium i praxi. Praha: Grada, 2015. ISBN 978-80-247-4712-5.
  • KUBINYI, J., J. SABOL a A. VONDRÁK. Principy radiační ochrany v nukleární medicíně a dalších oblastech práce s otevřenými radioaktivními látkami.. Praha: Grada, 2018. ISBN 978-80-271-0168-9.
  • NAVRÁTIL, Leoš a Jozef ROSINA. Medicínská biofyzika. Praha: Grada, 2019. ISBN 978-80-271-0209-9.
  • PODZIMEK, František. Radiologická fyzika: fyzika ionizujícího záření. Praha: České vysoké učení technické, 2013. ISBN 9-788001-053195.
  • PODZIMEK, František. Radiologická fyzika: příklady a otázky. Praha: České vysoké učení technické, 2012. ISBN 978-80-01-05093-4.
  • PODZIMEK, František. Radiologická fyzika: příklady a otázky. Praha: České vysoké učení technické, 2013. ISBN 978-80-87727-05-8.
  • SÚKUPOVÁ, Lucie. Radiační ochrana při rentgenových výkonech - to nejdůležitější pro praxi. Praha: Grada, 2018. ISBN 978-80-271-0709-4.


Study plans that include the course
Faculty Study plan (Version) Category of Branch/Specialization Recommended year of study Recommended semester