Course: Radiological Physics 2

» List of faculties » FZS » FZS
Course title Radiological Physics 2
Course code FZS/RFY2
Organizational form of instruction Lecture + Lesson
Level of course Bachelor
Year of study not specified
Semester Summer
Number of ECTS credits 5
Language of instruction Czech
Status of course Compulsory
Form of instruction Face-to-face
Work placements Course does not contain work placement
Recommended optional programme components None
Lecturer(s)
  • Beneš Jiří, prof. MUDr. RNDr. CSc.
  • Landa Jiří, Ing. Ph.D.
Course content
Lectures: 1) Ionizing radiation (IR) in medicine, radiodiagnostics, radiotherapy, nuclear medicine, definition of physical effects with respect to energy levels 2) IR in industry - radionuclide gauges, industrial emitters, defectoscopy, radiocarbon method of age determination, use in environmental quality monitoring 3) Natural CO in the environment - natural radioactivity, cosmic rays, natural radionuclides in the environment, radon in the environment 4) Monitoring of IR - monitoring of workplaces, personal monitoring, monitoring of discharges and surroundings of workplaces, emergency monitoring, principles, methods, radiation levels 5) Physical characteristics of individual systems in radiotherapy and radiodiagnostics, technical parameters determining the quality of data and the amount of radiation used 6) Computed X-ray tomography of X-ray CT, physical principle, image processing principle, energy load of patient and staff 7) Magnetic resonance imaging, physical principle of atom relaxation, image processing 8) Technical and organizational prerequisites for emergencies and accidents, classification of radiation accidents 9) Radiological emergencies in medicine and industry, prerequisites 10) The nature and physical impact of the radiation load on man, population, natural and man-made sources 11) Principles of radiation protection of living organisms, physical assumptions, geometry of space and propagation of IR 12) Radiation load of population in the Czech Republic, radiation load in medicine, energy levels, physical classification 13) Work safety at workplaces with sources of IT, prevention of extraordinary events 14) Characteristics of radioactive waste, basic physical and chemical properties Exercises: 1) Dosimetry of ionizing radiation 1, practical experiments 2) Dosimetry of ionizing radiation 2, practical experiments 3) Relations between dosimetric quantities, examples of calculations 4) Protection against ionizing radiation, conversion of energy levels in space 5) Dose limits, calculations, practical examples 6) Ionizing radiation in practice 1, practical demonstrations 7) Ionizing radiation in practice 2, practical demonstrations

Learning activities and teaching methods
Lecture, Practicum
Learning outcomes
Learning outcomes of the course unit The aim of the course is to build on the course Radiological Physics 1. Within the course, students will be acquainted with applications of ionizing radiation in medicine and industry. Lectures are supplemented with an explanation of the principles of X-ray CT and MR, which are closely related to radiology. In particular, a physical perspective is applied with emphasis on energy effects in inanimate environments and biological systems. Students will learn to correctly interpret the physical quantities used in the evaluation of radiation levels. They will get a summary of technical solutions used in radiodiagnostics and radiotherapy, but also in industry and the environment. Special attention is paid to the principles of protection against ionizing radiation and monitoring of its levels. Students will be acquainted with the radiation load of man from natural and artificial sources, the nature of radiation accidents and the basic principles of work safety with ionizing radiation sources.
Students obtain knowledge in given course in accordance with requirements and course programme.
Prerequisites
Preconditions are frased in the annotation of the course and in the curriculum of the studying programme.

Assessment methods and criteria
Oral exam, Test

Exam: - written test and oral examination.
Recommended literature
  • BENEŠ, Jiří, Daniel JIRÁK a František VÍTEK. Základy lékařské fyziky. Praha: Karolinum, 2015. ISBN 978-80-246-2645-1.
  • BENEŠ, Jiří, Jaroslava KYMPLOVÁ a František VÍTEK. Základy fyziky pro lékařské a zdravotnické obory: pro studium i praxi. Praha: Grada, 2015. ISBN 978-80-247-4712-5.
  • CHMELOVÁ, Jana. Základy ultrasonografie pro radiologické asistenty. Ostrava: Ostravská univerzita, 2006. ISBN 80-7368-221-4.
  • KUBINYI, J., J. SABOL a A. VONDRÁK. Principy radiační ochrany v nukleární medicíně a dalších oblastech práce s otevřenými radioaktivními látkami.. Praha: Grada, 2018. ISBN 978-80-271-0168-9.
  • MÍRKA, Hynek a Jiří FERDA. Multidetektorová výpočetní tomografie: perfuzní vyšetření. Praha: Galén, 2015. ISBN 978-80-7492-185-8.
  • NAVRÁTIL, Leoš a Jozef ROSINA. Medicínská biofyzika. Praha: Grada, 2019. ISBN 978-80-271-0209-9.
  • PODZIMEK, František. Radiologická fyzika: fyzika ionizujícího záření. Praha: České vysoké učení technické, 2013. ISBN 9-788001-053195.
  • PODZIMEK, František. Radiologická fyzika: příklady a otázky. Praha: České vysoké učení technické, 2013. ISBN 978-80-87727-05-8.
  • SÚKUPOVÁ, Lucie. Radiační ochrana při rentgenových výkonech - to nejdůležitější pro praxi. Praha: Grada, 2018. ISBN 978-80-271-0709-4.


Study plans that include the course
Faculty Study plan (Version) Category of Branch/Specialization Recommended year of study Recommended semester