Course: Chapters of applied mathematics in radiology

» List of faculties » FZS » KMA
Course title Chapters of applied mathematics in radiology
Course code KMA/PAMR
Organizational form of instruction Lecture + Lesson
Level of course Bachelor
Year of study not specified
Semester Winter
Number of ECTS credits 4
Language of instruction Czech
Status of course Compulsory
Form of instruction Face-to-face
Work placements Course does not contain work placement
Recommended optional programme components None
Course availability The course is available to visiting students
Lecturer(s)
  • Bittner Václav, Mgr. Ph.D.
Course content
Lectures: A) Introduction to the differential and integral calculus of functions of one real variable 1) Numerical sets; display 2) Functions of one real variable; basic properties of functions and operations with functions 3) Elementary function 4) Sequences (basic concepts, sequence limit) 5) Limit and continuity of a function; calculation of function limits; properties of continuous functions 6) Derivation of function I (geometric meaning, tangent equation, calculation of derivatives) 7) Derivation of a function II (derivative of a complex function, differential of a function, l'Hospital's rule) 8) The connection between the derivative of a function and its course; investigation of the progress of the function 9) Primitive functions and indefinite integral (basic rules, per partes method, substitution method) 10) Riemann's integral and its calculation 11) Application of a definite integral; It does not have an integral B) Introduction to linear algebra 12) Arithmetic n-dimensional vector space (linear dependence of vectors, basis and dimension of vector space); Nut (matrix operations, rank and determinant of a matrix) 13) Systems of linear algebraic equations; Inverse matrix 14) Eigennumbers and eigenvectors of a matrix Exercises: Knowledge from the lecture is practiced. Examples of applications of knowledge in the fields of Biomedical Technology are included and Radiology. Available sw applications are used.

Learning activities and teaching methods
Lecture, Practicum, Students' self-study
  • Contacts hours - 70 hours per semester
Learning outcomes
The subject is an introduction to the differential and integral calculus of functions of one real variable and to linear algebra.
Basic knowledge of differential and integral calculus of functions of one real variable and linear algebra.
Prerequisites
Knowledge of mathematics at the high school level

Assessment methods and criteria
Written exam, Systematické pozorování studenta, Test

Credit: - awarded for active participation in exercises and for successful completion of prescribed tests and tasks. Exam: - written, consists of a numerical and theoretical part, - the assessment from the exercise will be taken into account when grading the exam.
Recommended literature
  • BEČVÁŘ, J.:. Lineární algebra. Praha : Matfyzpress, 2019. ISBN 978-80-7378-378-5.
  • DOŠLÝ, O., ZEMÁNEK, P. Integrální počet v R. Brno: Masarykova univerzita, 2011. ISBN 978-80-210-5635-0.
  • Klůfa, J. Základy matematiky pro Vysokou školu ekonomickou. Ekopress, Praha, 2021. ISBN 978-808-7865-729.
  • MUSILOVÁ, J., MUSILOVÁ, P. Matematika pro porozumění i praxi: netradiční výklad tradičních témat vysokoškolské matematiky. Brno: VUTIUM, 2017. ISBN 978-80-214-5503-0.
  • PETÁKOVÁ, J. Matematika - příprava k maturitě a k přijímacím zkouškám na vysoké školy. Praha, 2020. ISBN 978-80-7196-487-2.
  • POLÁK, J. Přehled středoškolské matematiky. Praha, Prometheus, 2015. ISBN 978-807-1964-582.


Study plans that include the course
Faculty Study plan (Version) Category of Branch/Specialization Recommended year of study Recommended semester