Course: Instrumentation 1

« Back
Course title Instrumentation 1
Course code FZS/PTR1
Organizational form of instruction Lecture + Lesson
Level of course Bachelor
Year of study not specified
Semester Summer
Number of ECTS credits 4
Language of instruction Czech
Status of course Compulsory
Form of instruction Face-to-face
Work placements Course does not contain work placement
Recommended optional programme components None
Lecturer(s)
  • Beran Tomáš, MUDr.
  • Richter Igor, doc. MUDr. Ph.D.
  • Souček Tomáš, Ing.
Course content
Lectures: 1) Introduction to the issue, definition of the terms medical diagnostics and therapy; overview of physical fields used in medicine and their energy burden on the patient in diagnostics and therapy 2) Overview of the basic principles of medical diagnostics and therapy using non-ionizing electromagnetic fields, ECG, EMG, EEG, induction tomography, oximetry, electroporation, high-frequency ablation, etc. 3) Principle of ultrasound (US) image generation, resolution, penetration of US through tissues, acoustic interfaces, biological efficiency, color Doppler analysis, duplex imaging 4) Basic components of an US device, types of probes and their use, recording of US examinations, causes of artifacts; general indications and preparation for US examinations; types of ultrasound devices and their equipment, differences between devices and their useful properties, special accessories according to fields 5) Special ultrasound imaging techniques (perioperative, endocavitary and endoscopic ultrasound examination, echocardiography, neonatal ultrasound diagnostics, ultrasound in mammology), biopsy under ultrasound, transcranial Doppler recording, contrast agents in ultrasound diagnostics 6) Principle of computed tomography, characteristics of individual systems, differences between incremental and spiral CT; raw data, technical parameters determining data quality and amount of radiation used 7) Transformation of raw data into images and assessment of image data quality; dose reduction options; spatial and personnel equipment, documentation and archiving options 8) Basic concepts and operating principles of X-ray imaging systems, overview of systems, basic block diagram, physical principles 9) Basic radiological tools, fixed and mobile systems (C arms), mammography, dental and panoramic X-ray, types of cassettes 10) X-ray machine with fixed and rotating anode, focal points and parameters of the X-ray machine 11) Influence of anode voltage, current, proton number of anode material on the X-ray spectrum, exposure and exposure machines, X-ray detectors 12) Basic methods of image data acquisition and processing, basic quality criteria of output image data 13) X-ray TV systems, principle of operation of the X-ray image intensifier and its characteristics, principle and essence of angiography, DSA 14) Basics of digital radiography, classification and overview of systems, CR systems, digital radiography with direct and indirect conversion Exercises: 1) Spectrum of electromagnetic radiation, relationship between wavelength, frequency and propagation speed, origin and attenuation in biological objects, calculation examples 2) Examples of ECG, EEG, EMG signal acquisition 3) Practical examples of ultrasound waves; A-mode, B-mode, M-mode, color Doppler analysis 4) Ultrasound duplex imaging, Power Doppler, harmonic frequencies 5) Practical examples of ultrasound examination 6) Practical examples of CT ultrasound 7) Transformation of raw data into images and evaluation of CT image data quality 8) Origin and attenuation of X-ray radiation, half-thickness, calculations on real data 9) Interaction of X-ray radiation with matter 10) X-ray tube, X-ray tube parameters, X-ray sensors 11) Origin and types of X-ray radiation devices and their specifics, dosimetry and units for X-ray 12) Example of an X-ray device 13) Processing and editing of digital images 14) Principle of DSA

Learning activities and teaching methods
Demonstration, Lecture, Practicum, Students' self-study
  • Contacts hours - 56 hours per semester
Learning outcomes
The course introduces students to the basic principles of medical devices used in diagnostics and therapy. The individual principles of application of various physical fields are explained. The different nature of the structural arrangement of devices using mechanical and ultrasonic waves, non-ionizing electromagnetic fields and devices with ionizing radiation is emphasized. The main goal is to teach the student the basic principles of devices used in radiology. It is based on knowledge of physics and at the level of block diagrams of technical equipment. Students will gain knowledge and skills in the use of instrumentation in radiology with an emphasis on basic physical principles, technical design, parameters and specifics of use in clinical practice.
Students will gain knowledge and skills in the use of instrumentation in radiology with an emphasis on basic physical principles, technical design, parameters and specifics of use in clinical practice.
Prerequisites
The subject is based on knowledge of physics and at the level of block diagrams of technical devices.

Assessment methods and criteria
Systematické pozorování studenta, Test

Classified credit: - 80% participation in exercises, - self-study, - activity in lectures and seminars, - written test.
Recommended literature
  • FERDA, Jiří a kol. Základy zobrazovacích metod. Praha: Galén, 2015. ISBN 978-80-749-2164-3.
  • FERDA, Jiří. Inovativní zobrazovací metody. Praha: Galén, 2015. ISBN 978-80-7492-186-5.
  • HEŘMAN, Miroslav. Základy radiologie. Olomouc: Univerzita Palackého, 2014. ISBN 978-80-244-2901-4.
  • HRAZDIRA, Ivo. Biofyzikální základy ultrasonografie: jak pracovat s ultrazvukovým diagnostickým přístrojem: praktická příručka s teoretickým úvodem pro stáž připravenou v rámci projektu: "Prohloubení odborné spolupráce. Olomouc: Univerzita Palackého v Olomouci, 2011. ISBN 978-80-244-2895-6.
  • CHMELOVÁ, Jana. Základy ultrasonografie pro radiologické asistenty. Ostrava: Ostravská univerzita, 2006. ISBN 80-7368-221-4.
  • ROZMAN, J. Elektronické přístroje v lékařství. Praha: Academia, 2006. ISBN 80-200-1308-3.
  • SABOL, Jozef a Petr VLČEK. Radiační ochrana v radioterapii. Praha: České vysoké učení technické, 2011. ISBN 978-80-01-04757-6.
  • SEIDL, Zdeněk. Radiologie pro studium i praxi. Praha: Grada, 2012. ISBN 978-80-247-4108-6.
  • SÚKUPOVÁ, Lucie. Radiační ochrana při rentgenových výkonech - to nejdůležitější pro praxi. Praha: Grada, 2018. ISBN 978-80-271-0709-4.
  • VOMÁČKA, Jaroslav. Zobrazovací metody pro radiologické asistenty. Olomouc: Univerzita Palackého v Olomouci, 2015. ISBN 978-80-244-4508-3.


Study plans that include the course
Faculty Study plan (Version) Category of Branch/Specialization Recommended year of study Recommended semester