Course: Mathematics 1

« Back
Course title Mathematics 1
Course code KMA/KZMA1
Organizational form of instruction Seminary
Level of course Master
Year of study 1
Semester Summer
Number of ECTS credits 3
Language of instruction Czech
Status of course Compulsory
Form of instruction Face-to-face
Work placements Course does not contain work placement
Recommended optional programme components None
Course availability The course is available to visiting students
Lecturer(s)
  • Břehovský Jiří, Mgr. Ph.D.
  • Příhonská Jana, doc. RNDr. Ph.D.
Course content
The lectures will provide a brief theoretical introduction to the mentioned topics and an introduction to basic terms. All terms will be interpreted from the point of view of their application in the teaching of mathematics at the 1st grade of elementary school, while the rigor of the interpretation will be subordinated to this point of view. Thematic areas - lectures: 1. A brief overview of the history of mathematics. Propositional logic, logical construction of mathematics, reflection of propositional logic in the mathematics curriculum at primary school. 2. Sets - set operations, word problems solved using Venn diagrams 3. Binary relations - basic concepts and properties, examples of relations from the real world. 4. Equivalence relations, properties, decomposition of a set into classes, examples of equivalences. 5. Arrangement relations, properties, examples of arrangements. 6. Display, functions as special cases of binary relations, examples of functions in elementary school 7. Binary operations - basic properties. Thematic areas - exercises: Material from previous lectures is discussed.

Learning activities and teaching methods
Monological explanation (lecture, presentation,briefing), Dialogue metods(conversation,discussion,brainstorming), Self-study (text study, reading, problematic tasks, practical tasks, experiments, research, written assignments), Individual consultation, Lecture, Practicum, E-learning
  • Class attendance - 6 hours per semester
  • Preparation for credit - 14 hours per semester
  • Home preparation for classes - 18 hours per semester
Learning outcomes
The subject is an theoretical introduction into algebra (binary relation, mapping, binary operation), propositional calculus and naive set theory.
Knowledge of the essential concepts of arithmetics, intuitive set theory and propositional calculus. Insight into the concept of natural number defined by means of different ways.
Prerequisites
Knowledge of secondary school mathematics, successful completion of the subject MPRP.
KMA/KZMAP
----- or -----
KMA/PZMAP

Assessment methods and criteria
Student's performance analysis, Test

Active participations on seminars, successfully absolved tests. Knowledge of secondary school mathematics (by curriculum of gymnasium, humanities). Successful completion of the subject MPRP.
Recommended literature
  • Učebnice matematiky pro 1. st. ZŠ - různé řady.
  • Bělík, M. Teorie binárních operací. [Skriptum UJEP.]. Most, 1995.
  • Divíšek, J. a kol. Didaktika matematiky pro učitelství 1. stupně ZŠ. Praha, SPN, 1989.
  • Hejný, M. a kol. Teória vyučovania matematiky 2. Bratislava, SPN, 1990.
  • Kopka, J. Kapitoly o přirozených číslech. (Skriptum UJEP.). Ústí nad Labem, 2003. ISBN 80-7044-472-X.
  • Križalkovič, K. a kol. Didaktika matematiky na 1. stupni ZŠ. Bratislava, SPN, 1990.
  • Križalkovič, K. a kol. Základy elementárnej aritmetiky. Bratislava, SPN, 1991.
  • Malinová, E. Kapitoly z elementární aritmetiky. Praha, SPN, 1986.
  • Malinová, E. Teorie vyučování matematiky v 1.-4. r. ZŠ - část 1 (Aritmetika). Praha, SPN, 1978.
  • Novotná, V., Pisklák, B. Matematika 1 ve studiu učitelství 1. stupně základní školy. Ostrava, 2023.
  • Panáčová, J., Beránek, J. Základy elementární aritmetiky s didaktikou pro učitelství 1. stupně ZŠ. Brno, 2021. ISBN 978-80-210-9863-3.
  • ZEHNALOVÁ, J. Cvičení z elementární aritmetiky a elementární geometrie II. Ostarva, 2005. ISBN 80-7042-123-1.


Study plans that include the course
Faculty Study plan (Version) Category of Branch/Specialization Recommended year of study Recommended semester