Lecturer(s)
|
-
Šidlof Petr, doc. Ing. Ph.D.
-
Hančilová Ilona, Ing. Ph.D.
|
Course content
|
Lectures: 1.Statics of particles. Equilibrium equations, moment of a force. Distributed loads. 2.Free-body diagrams. Reactions. Concurrent force systems. 3.Friction. 4.Steel. Aluminum and other alloys. 5.Glass, ceramics, polymers. 6.Biomechanics. Tutorials: 1.Statics of particles. Equilibrium equations. 2.Moment of a force. 3.Distributed loads. 4.Free-body diagrams. 5.Free-body diagrams. Reactions. 6.Mechanical systems. 7.Test 1 - statics with no friction. 8.Friction. 9.Mechanical systems with friction. 10.Rolling resistance. 11.Test 2 - statics with friction. 12.Reserve.
|
Learning activities and teaching methods
|
Monological explanation (lecture, presentation,briefing)
- Class attendance
- 42 hours per semester
- Preparation for credit
- 8 hours per semester
- Preparation for exam
- 10 hours per semester
|
Learning outcomes
|
The course focuses on the theory and solution of technical problems from the field of mechanics of rigid bodies. The students learn to analyze simple mechanical systems, draw the free-body diagram and to assemble and solve the equilibrium equations or equations of motion, and understands the basic mechanical properties of common engineering materials such as steel, alloys, glass, ceramics and polymers. The student acquires basic orientation in related domains of biomechanics and human locomotion.
Students will acquire the basic knowledge of the technical statics of rigid bodies. Special focus is given to free body diagrams and their application in problems of statics of rigid and elastic bodies. Within statics of rigid bodies, the student is able to write down the equations of equilibrium of bodies and systems in statically definite cases. The students also learn the mechanical properties of basic materials (steel and nonferrous alloys, glass and ceramics, polymers).
|
Prerequisites
|
unspecified
|
Assessment methods and criteria
|
Combined examination
Presence at practise, succesful examination.
|
Recommended literature
|
-
BURIANOVÁ, Lidmila. Mechanika: příklady. 3. vyd. Liberec: Technická univerzita v Liberci, 2015. ISBN 978-80-7494-222-.
-
BURIANOVÁ, Lidmila. Základy fyziky. Liberec: Technická univerzita v Liberci, 2013. ISBN 978-80-7372-996-7.
-
HIBBELER, R. C. Engineering mechanics. Edinburgh: Pearson Education, 2016. ISBN 01-33918920.
-
HRNČIAR, Viliam. Materials science. Bratislava: Slovenská technická univerzita, 2009. ISBN 978-80-2273-197-3.
-
JANURA, Miroslav. Mechanika a biomechanika 2. Ostrava: Ostravská univerzita v Ostravě, 2014. ISBN 978-80-7464-510-5.
-
JANURA, Miroslav. Biomechanika II. Ostrava: Ostravská univerzita v Ostravě, 2011. ISBN 978-80-7464-044-5.
-
JANURA, Miroslav. Mechanika a biomechanika 3. Ostrava: Ostravská univerzita v Ostravě, 2014. ISBN 78-80-7464-511-2.
-
KOPAL, Antonín. Příklady z fyziky I: mechanika: kmity, vlny: nauka o teple. Liberec: Technická univerzita v Liberci, 2011. ISBN 978-80-7372-783-3.
-
KUNZ, Jiří. Technická mechanika: statika s příklady. Praha: České vysoké učení technické, 2014. ISBN 978-80-01-05563-2.
-
PSALMAN, Vladimír a Iveta PETRÍKOVÁ ROSINOVÁ. Biomechanika pre fyzioterapeutov. Brno: Masarykova univerzita, 2016. ISBN 978-80-210-8447-6.
|